Abstract
The purpose of this paper is the proof of an almost everywhere version of the classical central limit theorem (CLT). As is well known, the latter states that for IID random variables Y1, Y2, … on a probability space (Ω, , P) with we have weak convergence of the distributions of to the standard normal distribution on ℝ. We recall that weak convergence of finite measures μn on a metric space S to a finite measure μ on S is defined to mean thatfor all bounded, continuous real functions on S. Equivalently, one may require the validity of (1·1) only for bounded, uniformly continuous real functions, or even for all bounded measurable real functions which are μ-a.e. continuous.
Publisher
Cambridge University Press (CUP)
Reference9 articles.
1. [4] Brosamler G. A. . Energy of diffusion paths and the spectrum of the Laplacian (to appear).
Cited by
230 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献