Abstract
In this paper we will be concerned with the problem of describing the Jacobson radical of the semigroup algebraK[S] of an arbitrary semigroupSover a fieldKin the case where this algebra satisfies a polynomial identity. Recently, Munn characterized the radical of commutative semigroup algebras [9]. The key to his result was to show that, in this situation, the radical must be a nilideal. We are going to extend the latter to the case of PI-semigroup algebras. Further, we characterize the radical by means of the properties ofSor, more precisely, by some groups derived fromS. For this purpose we will exploit earlier results leading towards a characterization of semigroup algebras satisfying polynomial identities [5], [15], which generalized the well known case of group algebras (cf. [13], chap. 5).
Publisher
Cambridge University Press (CUP)
Reference15 articles.
1. On commutative semigroup algebras
2. The semisimplicity and identities of semigroup algebras of inverse semi-groups;Domanov;Rings and Modules, Mat. Issled. Vyp,1976
3. Group-graded rings, smash products, and group actions
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献