Representation of tiled matrix rings as full matrix rings

Author:

Chatters A. W.

Abstract

It can be very difficult to determine whether or not certain rings are really full matrix rings. For example, let p be an odd prime, let H be the ring of quaternions over the integers localized at p, and setThen T is not presented as a full matrix ring, but there is a subring W of H such that TM2(W). On the other hand, if we take H to be the ring of quaternions over the integers and form T as above, then it is not known whether TM2(W) for some ring W. The significance of p being an odd prime is that H/pH is a full 2 x 2 matrix ring, whereas H/2H is commutative. Whether or not a tiled matrix ring such as T above can be re-written as a full matrix ring depends on the sizes of the matrices involved in T and H/pH. To be precise, let H be a local integral domain with unique maximal ideal M and suppose that every one-sided ideal of H is principal. Then H/MMk(D) for some positive integer k and division ring D. Given a positive integer n. let T be the tiled matrix ring consisting of all n x n matrices with elements of H on and below the diagonal and elements of M above the diagonal. We shall show in Theorem 2.5 that there is a ring W such that TMn(W) if and only if n divides k. An important step in the proof is to show that certain idempotents in T/J(T) can be lifted to idempotents in T, where J(T) is the Jacobson radical of T. This technique for lifting idempotents also makes it possible to show that there are (k + n − 1)!/ k!(n−1)! isomorphism types of finitely generated indecomposable projective right T-modules (Theorem 2·10).

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference5 articles.

1. The Theory of Rings

2. Non-commutative regular local rings of dimension 2

3. Non-commutative regular local rings of dimension 2: Part II;Chatters;J. Algebra

4. STRUCTURE AND CLASSIFICATION OF HEREDITARY NOETHERIAN PRIME RINGS

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A CHARACTERISATION OF MATRIX RINGS;Bulletin of the Australian Mathematical Society;2022-08-08

2. Cryptographic Algorithms on Groups and Algebras;Journal of Mathematical Sciences;2017-05-05

3. Subalgebras of matrix algebras generated by companion matrices;Linear Algebra and its Applications;2010-05

4. Hidden matrix semirings;Journal of Mathematical Sciences;2006-06

5. Recognition of matrix rings II;Israel Journal of Mathematics;1996-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3