Abstract
Let ∑un be a convergent infinite series which is not summable in finite form. In principle its sum can be found, to within any preassigned error ε, by adding numerically a sufficient number of terms; but if the series is slowly convergent, the ‘sufficient number’ of terms may be prohibitively large. A plan to deal with this case is to separate the series into a ‘main part’ u0+u1+ … +un−1 and a ‘remainder’ Rn = un+un+1+…; the main part is evaluated by direct summation, while the remainder is transformed analytically into a series which is more rapidly ‘convergent’, in the practical sense, and so evaluated. For example, the Euler-Maclaurin sum-formula gives such a transformation. It commonly happens that the new form of the remainder Rn is a divergent series, but that it represents Rn asymptotically as n ˜ ∞. It is for this reason that the transformation is applied to Rn instead of to the whole series; for practical use we have to choose n sufficiently large for the error inherent in the use of the asymptotic series to be below the preassigned bound ε.
Publisher
Cambridge University Press (CUP)
Reference1 articles.
1. Boole , Calculus of finite differences, 2nd ed. (1872), p. 85
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献