The G-values of various games

Author:

Guy Richard K.,Smith Cedric A. B.

Abstract

A disjunctive combination of a finite set of two-person games Γ1, Γ2, …, Γk may be defined thus: The players play alternately, each in turn making a move in one and only one of the individual games. If, in addition, the conditions are imposed that(i) a player loses if unable to move (in any game),(ii) the games are impartial, i.e. the allowable moves from any position do not depend on which player is about to play (or on the previous moves, though these can be ‘built in’ to the position if necessary),(iii) the games are of bounded play, i.e. for each game Γi corresponding to any initial position Pj there is an integer bij such that the game must terminate after at most bij moves, then Grundy (6) has shown that there is a function G(P) (called by him Ω(P)) of the positions P with the following properties:(1a) G(P) = 0 for a terminal position, from which no move is possible; for other positions G(P) is the smallest non-negative integer different from all values of G(Qi), where there is a permissible move from P to Qi,(1b) for a disjunctive combination of games, G for the combined position is the nim-sum of the G's the individual positions. By the nim-sum, we mean that each separate G is to be written in the scale of 2, as Σar 2r, and then in forming the sum, the ar's are to be added mod 2 for each value of r, as in the theory of Nim((1), (7), (8), pp. 36–8).

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference9 articles.

1. (9) Smith C. A. B. Compound two-person deterministic games (unpublished).

2. (3) Dawson T. R. Caissa's wild, roses (1935), p. 13.

3. (2) Dawson T. R. Fairy Chess Review (12 1934), p. 94, problem 1603.

4. Nim, A Game with a Complete Mathematical Theory

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Winning strategies: the emergence of base 2 in the game of nim;The Mathematical Gazette;2022-06-22

2. Richard Kenneth Guy, 1916–2020;Bulletin of the London Mathematical Society;2022-02

3. Computing the Winner of 2-Player TANHINMIN;IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences;2021-09-01

4. Partition games;Discrete Applied Mathematics;2020-10

5. From Combinatorial Games to Shape-Symmetric Morphisms;Lecture Notes in Mathematics;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3