Abstract
A homomorph is a class of (finite soluble) groups closed under the operation Q of taking epimorphic images. (All groups considered in this paper are finite and soluble.) Among those types of homomorphs that have found particular interest in the theory of finite soluble groups are formations and Schunck classes; the reader is referred to (2), § 2, for a definition of those classes. In the present paper we are interested in homomorphs satisfying the following additional closure property:(W0) if A is abelian with elementary Sylow subgroups, then each wreath product A G (with respect to an arbitrary permutation representation of G) with G ∊ is contained in .
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bibliography;Finite Soluble Groups;1992-12-31
2. Prefrattini groups;Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics;1983-04