Bayesian vine copulas for modelling dependence in data breach losses

Author:

Liu JiaORCID,Li Jackie,Daly Kevin

Abstract

AbstractPotentialdata breach losses represent a significant part of operational risk and can be a serious concern for risk managers and insurers. In this paper, we employ the vine copulas under a Bayesian framework to co-model incidences from different data breach types. A full Bayesian approach can allow one to select both the copulas and margins and estimate their parameters in a coherent fashion. In particular, it can incorporate process, parameter, and model uncertainties, and this is very important for applications in risk management under current regulations. We also conduct a series of sensitivity tests on the Bayesian modelling results. Using two public data sets of data breach losses, we find that the overall dependency structure and tail dependence vary significantly between different types of data breaches. The optimally selected vine structure and pairwise copulas suggest more conservative value-at-risk estimates when compared to the other suboptimal copula models.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability

Reference47 articles.

1. MODELLING MORTALITY DEPENDENCE WITH REGIME-SWITCHING COPULAS

2. Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters

3. Conditional copula simulation for systemic risk stress testing;Brechmann;Insurance: Mathematics and Economics,2013

4. Copula-based actuarial model for pricing cyber-insurance policies;Herath;Insurance Markets and Companies: Analyses and Actuarial Computations,2011

5. Smith, M.S. (2011). Bayesian approaches to copula modelling. In P. Damien, P. Dellaportas, N. Polson, and D. Stephens (Eds.), Hierarchical Models and MCMC: A Tribute to Adrian Smith (pp. 395–402). Oxford University Press, Oxford, Bayesian Statistics.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3