Numerical study of the rotational direction effect on aerodynamic loading characteristics of shipborne helicopter rotor

Author:

Su D.C.,Shi Y.J.,Xu G.H.

Abstract

ABSTRACTNumerical simulations of ship/rotor-coupled flowfield have been performed to investigate the rotational direction effects on a shipborne single-rotor helicopter in different deck landing trajectories (i.e., lateral and longitudinal translation) based on Reynolds-averaged Navier-Stokes (RANS) solver. Both the momentum source model and moving overset mesh model are employed to simulate the effect of the rotor on the ship airwake for different levels of fidelity requirement. The aerodynamic loading characteristics in terms of time-averaged and root-mean-square (RMS) thrust and pitch and roll moments are compared for two helicopter rotors with opposite rotation directions in a starboard 30 degrees wind condition. The time-averaged results show that the mean thrust of a counterclockwise rotor is greater than that of a clockwise rotor, particularly in the lateral translation phase. This suggests that a helicopter with a counterclockwise rotor could provide more collective control margin under this condition. Furthermore, a more significant reduction in pitch moment is experienced by the counterclockwise rotor during the two landing trajectories, and thus the effect of the aircraft being pulled towards the hangar tends to be more severe on the helicopter with the counterclockwise rotor. RMS loading results indicate that the unsteady loading levels on the clockwise rotor are much higher than that of the counterclockwise rotor in all three axes for most of the lateral and longitudinal translation phases. As a result, the pilot is likely to experience a higher workload when operating a helicopter with a clockwise rotor in the case of a deck landing in this wind condition.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference33 articles.

1. 16. Lee, Y.L. , Silva, M. Cfd modeling of rotor flowfield aboard ship, AIAA Paper No. 2010–867, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aero-space Exposition, Orlando, Florida, US, 4–7 January 2010.

2. Unsteady Aerodynamic Loading on a Helicopter Fuselage in a Ship Airwake

3. Challenges at the helicopter–ship dynamic interface;Lumsden;24th European Rotorcraft Forum, Marseilles, France,1998

4. Wind Tunnel Testing of a Helicopter Fuselage and Rotor in a Ship Airwake

5. Aerodynamic interactions between a rotor and airframe in forward flight

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3