Author:
ELLIS-MONAGHAN J.,MOFFATT I.
Abstract
We find new properties of the topological transition polynomial of embedded graphs, Q(G). We use these properties to explain the striking similarities between certain evaluations of Bollobás and Riordan's ribbon graph polynomial, R(G), and the topological Penrose polynomial, P(G). The general framework provided by Q(G) also leads to several other combinatorial interpretations these polynomials. In particular, we express P(G), R(G), and the Tutte polynomial, T(G), as sums of chromatic polynomials of graphs derived from G, show that these polynomials count k-valuations of medial graphs, show that R(G) counts edge 3-colourings, and reformulate the Four Colour Theorem in terms of R(G). We conclude with a reduction formula for the transition polynomial of the tensor product of two embedded graphs, showing that it leads to additional relations among these polynomials and to further combinatorial interpretations of P(G) and R(G).
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献