A spiral self-magnetically insulated ion diode

Author:

Pushkarev A.I.,Isakova YU. I.

Abstract

AbstractThe paper presets the results of a study on a self-magnetically insulated ion diode with an explosive-emission potential electrode. The experiments have been carried out using the TEMP-4M accelerator, operating in a double-pulse mode: the first negative pulse (300–500 ns, 100–150 kV) followed by the second positive pulse (150 ns, 250–300 kV). The ion beam energy density was 0.3–2.5 J/cm2; the beam was composed from carbon ions (80–85%) and protons. We studied several geometries of the diode: planar and focusing strip arrangement, annular and spiral geometries. It was shown that during the second voltage pulse, a condition of magnetic insulation in the diode gap is fulfilled (B/Bcr ≥3). Using the new spiral geometry of the diode, it was possible to increase the efficiency of ion current generation due to the suppression of the electron component of the total diode current by increasing the electron transit time in the gap. We have increased the efficiency of carbon ion generation from 5–9% (in the planar strip diodes) up to 17–20% in the spiral diode. The spiral geometry of the diode makes it possible to increase the efficiency of C+ ion generation 25–30 times compared to the space-charge-limited current (Childe-Langmuir limit). This is more than two times higher than in other known geometries of self-magnetically insulated diodes. The spiral diode has a resource of more than 107 pulses.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3