Machine learning predicts blood lactate levels in children after cardiac surgery in paediatric ICU

Author:

Sughimoto KoichiORCID,Levman Jacob,Baig Fazleem,Berger Derek,Oshima Yoshihiro,Kurosawa Hiroshi,Aoki Kazunori,Seino Yusuke,Ueda Tetsuya,Liu Hao,Miyaji Kagami

Abstract

AbstractBackground:Although serum lactate levels are widely accepted markers of haemodynamic instability, an alternative method to evaluate haemodynamic stability/instability continuously and non-invasively may assist in improving the standard of patient care. We hypothesise that blood lactate in paediatric ICU patients can be predicted using machine learning applied to arterial waveforms and perioperative characteristics.Methods:Forty-eight post-operative children, median age 4 months (2.9–11.8 interquartile range), mean baseline heart rate of 131 beats per minute (range 33–197), mean lactate level at admission of 22.3 mg/dL (range 6.3–71.1), were included. Morphological arterial waveform characteristics were acquired and analysed. Predicting lactate levels was accomplished using regression-based supervised learning algorithms, evaluated with hold-out cross-validation, including, basing prediction on the currently acquired physiological measurements along with those acquired at admission, as well as adding the most recent lactate measurement and the time since that measurement as prediction parameters. Algorithms were assessed with mean absolute error, the average of the absolute differences between actual and predicted lactate concentrations. Low values represent superior model performance.Results:The best performing algorithm was the tuned random forest, which yielded a mean absolute error of 3.38 mg/dL when predicting blood lactate with updated ground truth from the most recent blood draw.Conclusions:The random forest is capable of predicting serum lactate levels by analysing perioperative variables, including the arterial pressure waveform. Thus, machine learning can predict patient blood lactate levels, a proxy for haemodynamic instability, non-invasively, continuously and with accuracy that may demonstrate clinical utility.

Publisher

Cambridge University Press (CUP)

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Pediatrics, Perinatology and Child Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3