Cytotoxic effects of cardioplegic solutions and cytoprotective effects of insulin on immature cardiac myocytes during hypothermic preservation

Author:

Orita Hiroyuki,Fukasawa Manabu,Uchino Hideaki,Uchida Tetsuro,Shiono Satoshi,Washio Masahiko

Abstract

AbstractThe purpose of this study was to evaluate the functional and biochemical effects of cardioplegic solutions on immature cardiac myocytes incubated under hypothermic conditions. In addition, the effects of insulin as an additive were evaluated in each solution. Cardiac myocytes were isolated from neonatal rat ventricles and cultured for four days; 12.5 x 105myocytes/flask were then incubated at 4 °C for three, six and 12 hours in three types of cardioplegic solutions—glucose-potassium solution (glucose: 50 gm/l, NaHCO3: 20 mEq, KCl: 20 mEq), lactated Ringer's solution (KCl: 20 mEq) and St. Thomas' Hospital solution. After each hypothermic incubation, enzymes were measured in the incubation solutions. The myocytes were then cultured for an additional 24 hours at 37 °C to evaluate the recovery of the myocyte beating rate. In the Ringer's group, the recovery ratio of the myocyte beating rate was complete at three hours, then decreased to 48.8 percent of control (beating rate prior to hypothermic incubation) at 12 hours. The glucose-potassium and St. Thomas' groups had significantly lower recovery ratios than the Ringer's group, beginning at three hours (63.4, 72.9, 95.6 percent, respectively). Release of enzymes (CPK and LDH) in the Ringer's group gradually increased and at 12 hours was 29.0 mIU/flask and 260.0 mIU/flask, respectively. The St. Thomas' group, in contrast, had significantly increased values for CPK at 12 hours to 116.0 mIU/flask, and the greatest increases of both enzymes were observed in the glucose-potassium group at 12 hours (CPK: 115.5, LDH: 1163.9). By addition of 20 IU/l insulin, marked improvements were observed in the Ringer's and glucose-potassium groups both functionally and biochemically. Thus, the lactated Ringer's solution had the least cytotoxic effects that might be suitable for a basic solution of various cardioplegic solutions during the neonatal period, and insulin may have beneficial effects on immature myocardium under hypothermic conditions.

Publisher

Cambridge University Press (CUP)

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Pediatrics, Perinatology, and Child Health

Reference30 articles.

1. Ischemic myocardial injury in cultured heart cells: Leakage of cytoplasmic enzymes from injured cells

2. A cardiac myocyte culture system as an in vitro experimental model for the evaluation of hypothermic preservation

3. Resistance of neonatal myocardium to injury during normothermic and hypothermic ischemic arrest and reperfusion;Grice;Circulation,1987

4. Effect of hypoxia on mechanical function in the neonatal mammalian heart;Jarmakani;Am J Physiol,1978

5. Cardiac myocyte functional and biochemical changes after hypothermic preservation in vitro: Protective effects of storage solutions;Orita;J Thorac Cardiovasc Surg,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3