A vascular endothelial growth factor A genetic variant is associated with improved ventricular function and transplant-free survival after surgery for non-syndromic CHD

Author:

Mavroudis Constantine D.,Seung Kim Daniel,Burnham Nancy,Morss Alexandra H.,Kim Jerry H.,Burt Amber A.,Crosslin David R.,McDonald-McGinn Donna M.,Zackai Elaine H.,Cohen Meryl S.,Nicolson Susan C.,Spray Thomas L.,Stanaway Ian B.,Nickerson Deborah A.,Russell Mark W.,Hakonarson Hakon,Jarvik Gail P.,Gaynor J. William

Abstract

AbstractBackgroundWe have previously shown that the minor alleles of vascular endothelial growth factor A (VEGFA) single-nucleotide polymorphism rs833069 and superoxide dismutase 2 (SOD2) single-nucleotide polymorphism rs2758331 are both associated with improved transplant-free survival after surgery for CHD in infants, but the underlying mechanisms are unknown. We hypothesised that one or both of these minor alleles are associated with better systemic ventricular function, resulting in improved survival.MethodsThis study is a follow-up analysis of 422 non-syndromic CHD patients who underwent neonatal cardiac surgery with cardiopulmonary bypass. Echocardiographic reports were reviewed. Systemic ventricular function was subjectively categorised as normal, or as mildly, moderately, or severely depressed. The change in function was calculated as the change from the preoperative study to the last available study. Stepwise linear regression, adjusting for covariates, was performed for the outcome of change in ventricular function. Model comparison was performed using Akaike’s information criterion. Only variables that improved the model prediction of change in systemic ventricular function were retained in the final model.ResultsGenetic and echocardiographic data were available for 335/422 subjects (79%). Of them, 33 (9.9%) developed worse systemic ventricular function during a mean follow-up period of 13.5 years. After covariate adjustment, the presence of the VEGFA minor allele was associated with preserved ventricular function (p=0.011).ConclusionsThese data support the hypothesis that the mechanism by which the VEGFA single-nucleotide polymorphism rs833069 minor allele improves survival may be the preservation of ventricular function. Further studies are needed to validate this genotype–phenotype association and to determine whether this mechanism is related to increased vascular endothelial growth factor production.

Publisher

Cambridge University Press (CUP)

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3