Brainstem auditory-evoked responses among children afflicted by severely hypoxic CHD

Author:

Pliego-Rivero F. Bernardo,Isaac-Olivé Keila,Otero Gloria A.ORCID

Abstract

Abstract Main aim: To electrophysiologically determine the impact of moderate to severe chronic hypoxia (H) resulting from a wide array of CHD (HCHD) conditions on the integrity of brainstem function. Materials and methods: Applying brainstem auditory-evoked response methodology, 30 chronically afflicted HCHD patients, who already had undergone heart surgery, were compared to 28 healthy control children (1–15 yo) matched by age, gender and socioeconomic condition. Blood oxygen saturation was clinically determined and again immediately before brainstem auditory-evoked response testing. Results: Among HCHD children, auditory wave latencies (I, III and V) were significantly longer (medians: I, 2.02 ms; III, 4.12 ms, and; V, 6.30 ms) compared to control (medians: I, 1.67ms; III, 3.72 ms, and; V, 5.65 ms), as well as interpeak intervals (HCHD medians: I-V, 4.25 ms, and; III-V, 2.25ms; control medians: I-V, 3.90 ms and, III-V, 1.80 ms) without significant differences in wave amplitudes between groups. A statistically significant and inverse correlation between average blood oxygen saturation of each group (control, 94%; HCHD, 78%) and their respective wave latencies and interpeak intervals was found. Conclusions: As determined by brainstem auditory-evoked responses, young HCHD patients manifestly show severely altered neuronal conductivity in the auditory pathway strongly correlated with their hypoxic condition. These observations are strongly supported by different brainstem neurological and image studies showing that alterations, either in microstructure or function, result from the condition of chronic hypoxia in CHD. The non-altered wave amplitudes are indicative of relatively well-preserved neuronal relay nuclei.

Publisher

Cambridge University Press (CUP)

Subject

Cardiology and Cardiovascular Medicine,General Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3