A theoretical and experimental study of double-layer convection

Author:

Rasenat S.,Busse F. H.,Rehberg I.

Abstract

The onset of thermal convection in a double layer of two superimposed immiscible fluids heated from below is investigated. The linearized equations of the problem are analysed in a much wider region of the parameter space than has been studied before. It is shown that the onset of steady convection in the two layers may occur in the form of either viscously or thermally coupled motions. In addition to the oscillatory interfacial instability, which depends on a non-vanishing distortion of the interface, there exists another oscillatory instability which corresponds to a cyclic variation between viscous and thermal coupling. Conditions for the onset of this instability are outlined and its connections with the other modes of the system are demonstrated in bifurcation diagrams. In the experiments the shadowgraph method is used for the visualization of the onset of convection and for the measurement of its wavelength. Changeovers between viscous and thermal coupling can be identified, but the experimental realization of an oscillatory onset has been elusive so far.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference19 articles.

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heat transport in three-layer turbulent thermal convection;Physical Review Fluids;2024-07-24

2. Turbulent thermal convection across a stable liquid-liquid interface;Physical Review Fluids;2024-03-22

3. Heat transport and flow structure in thermal convection with two liquid layers;Journal of Fluid Mechanics;2023-12-27

4. Optimization of Hopf Bifurcation Points;SIAM Journal on Scientific Computing;2023-06-23

5. Convection Cells With Accumulating Crust: Models of Continent and Mantle Evolution;Journal of Geophysical Research: Solid Earth;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3