The stability and the nonlinear evolution of quasi-geostrophic hetons

Author:

REINAUD JEAN N.,CARTON XAVIER

Abstract

We analyse the linear stability and nonlinear evolutions of circular hetons under the quasi-geostrophic approximation. We compare results obtained with a three-layer model and with a model based on a continuous density stratification. Though the models also differ by the vertical boundary conditions, they show a remarkable similarity in the stability properties of the hetons (threshold values of vortex radius for baroclinic instability, dominant modes, growth rates, etc.), and in their nonlinear evolutions (spatial reorganization of potential vorticity by nonlinear processes, end-states of the simulations). The hetons prone to baroclinic instability often break into two hetons drifting in opposite directions, and in more hetons, for wider initial structures. In both models, instability is quite sensitive to the vertical gap between the opposite-signed vortices: as it increases, the instability decreases and shifts to lower azimuthal modes. Finally, though modes l ≥ 2 (i.e. elliptical and shorter wave deformations) prevail in most of the parameter space, the mode l = 1 perturbation (a vertical tilt of the vortex column) exists for hetons with small vertical gaps. Such perturbations are concentrated vertically near the gap, and can only be evidenced in the continuously stratified model.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference38 articles.

1. Reinaud J. N. & Dritschel D. G. Submitted Destructive interactions between two counter-rotating quasi-geostrophic vortices. J. Fluid Mech.

2. Scale-dependent merging of baroclinic vortices

3. Eddies in Marine Science

4. Strong interactions between two corotating quasi-geostrophic vortices

5. Vortex Waves: Stationary "VStates," Interactions, Recurrence, and Breaking

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3