On Howard's upper bound for heat transport by turbulent convection

Author:

Busse F. H.

Abstract

The variational problem introduced by Howard (1963) for the derivation of an upper bound on heat transport by convection in a layer heated from below is analyzed for the case in which the equation of continuity is added as constraint for the velocity field. Howard's conjecture that the maximizing solution of the Euler equations is characterized by a single horizontal wave-number is shown to be true only for a limited range of the Rayleigh number, Ra. A new class of solutions with a multiple boundary-layer structure is derived. The upper bound for the Nusselt number, Nu, given by these solutions is Nu ≤ (Ra/1035)½ in the limit when the Rayleigh number tends to infinity. The comparison of the maximizing solution with experimental observations by Malkus (1954a) and Deardorff & Willis (1967) emphasizes the similarity pointed out by Howard.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference12 articles.

1. Busse, F. H. 1967b J. Fluid Mech. 30,625.

2. Busse, F. H. 1968 Report MPI/Astro 8/68 (Max-Planck-Institut für Physik und Astrophysik, Munich).

3. Busse, F. H. 1969 Z. angew. Math. Phys. 20,1.

4. Malkus, W. V. R. 1954b Proc. Roy. Soc. A 225,196.

5. Willis, G. E. & Deardorff, J. W. 1967 Phys. Fluids,10,931.

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3