Near-wall measurements in a three-dimensional turbulent boundary layer

Author:

COMPTON DEBORA A.,EATON JOHN K.

Abstract

An experiment was performed to measure near-wall velocity and Reynolds stress profiles in a pressure-driven three-dimensional turbulent boundary layer. An initially two-dimensional boundary layer (Reθ≈4000) was exposed to a strong spanwise pressure gradient. At the furthest downstream measurement locations there was also a fairly strong favourable streamwise pressure gradient.Measurements were made using a specially designed near-wall laser-Doppler anemometer (LDA), in addition to conventional methods. The LDA used short focal length optics, a mirror probe suspended in the flow, and side-scatter collection to achieve a measuring volume 35 μm in diameter and approximately 65 μm long.The data presented include mean velocity measurements and Reynolds stresses, all extending well below y+=10, at several profile locations. Terms of the turbulent kinetic energy transport equation are presented at two profile locations. The mean flow is nearly collateral (i.e. W is proportional to U) at the wall. Turbulent kinetic energy is mildly suppressed in the near-wall region and the shear stress components are strongly affected by three-dimensionality. As a result, the ratio of shear stress to turbulent kinetic energy is suppressed throughout most of the boundary layer. The angles of stress and strain are misaligned, except very near the wall (around y+=10) where the angles nearly coincide with the mean flow angle. Three-dimensionality appears to mildly reduce the production of turbulent kinetic energy.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3