Ion evaporation from Taylor cones of propylene carbonate mixed with ionic liquids

Author:

GUERRERO I.,BOCANEGRA R.,HIGUERA F. J.,DE LA MORA J. FERNANDEZ

Abstract

A combined experimental and numerical approach is used to extract information on the kinetics of ion evaporation from the region of high electric field around the tip of a Taylor cone of the neutral solvent propylene carbonate (PC) mixed with two ionic liquids. On the numerical side, the electric field on the surface of the liquid is computed in the absence of evaporation by solving the electrohydrodynamic problem in this region within the framework of the leaky dielectric model. These computations justify the approximate (2% max error) scaling Emax = β Ek for the maximum electric field on the surface, with Ek = γ1/2 ϵ0−2/3 (K/Q)1/6 for 0.111 < K < 0.888 S m−1 and a numerical value of β ≈ 0.76. Here γ is the surface tension of PC, ϵ0 is the electrical permittivity of vacuum, and K and Q are the liquid electrical conductivity and flow rate. On the experimental side, 16 different propylene carbonate solutions with either of the ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4) or EMI-bis(trifluoro-methylsulfonyl)imide (EMI-Im) are electrosprayed in a vacuum from a single Taylor cone, and their emissions of charged drops and ions are analysed by time-of-flight mass spectrometry at varying liquid flow rates Q. The sprays contain exclusively drops at large Q, both for small and for large electrical conductivities K, but enter a mixed ion–drop regime at sufficiently large K and small Q. Interestingly, the mixtures containing 10% and 15% (vol) EMI-Im exhibit no measurable ion currents at high Q, but approach a purely ionic regime (almost no drops) at small Q. The charge/mass ratio for the drops produced in these two mixtures increases continuously with decreasing Q, and gets very close to ionic values. Measured ion currents are represented versus computed maximum electric fields Emax on the liquid surface to infer ion evaporation kinetics. Comparison of measured ion currents with predictions from ion evaporation theory yields an anomalously low activation energy (~1.1 eV). This paradox appears to be due to alteration of the pure conj–eet electric field in the scaling laws used for the pure cone–jet regime, due to the substantial ion current density arising even when the ion current is relatively small. Elimination of this interference would require future ion current measurements in the 10–100 pA level. The electrical propulsion characteristics of the emissions from these liquids are determined and found to be excellent, particularly for 10% and 15% (vol) EMI-Im.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3