Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows

Author:

DIMITRAKOPOULOS P.,HIGDON J. J. L.

Abstract

The yield conditions for the displacement of fluid droplets from solid boundaries are studied through a series of numerical computations. The study includes gravitational and interfacial forces, but is restricted to two-dimensional droplets and low-Reynolds-number flow. A comprehensive study is conducted, covering a wide range of viscosity ratio λ, Bond number Bd, capillary number Ca and contact angles θA and θR. The yield conditions for drop displacement are calculated and the critical shear rates are presented as functions Ca(λ, Bd, θA, Δθ) where Δθ=θA−θR is the contact angle hysteresis. The numerical solutions are based on the spectral boundary element method, incorporating a novel implementation of Newton's method for the determination of equilibrium free surface profiles. The numerical results are compared with asymptotic theories (Dussan 1987) based on the lubrication approximation. While excellent agreement is found in the joint asymptotic limits Δθ[Lt ]θA[Lt ]1, the useful range of the lubrication models proves to be extremely limited. The critical shear rate is found to be sensitive to viscosity ratio with qualitatively different results for viscous and inviscid droplets. Gravitational forces normal to the solid boundary have a significant effect on the displacement process, reducing the critical shear rate for viscous drops and increasing the rate for inviscid droplets. The low-viscosity limit λ→0 is shown to be a singular limit in the lubrication theory, and the proper scaling for Ca at small λ is identified.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3