Response of a circular cylinder wake to superharmonic excitation

Author:

BAEK SEUNG-JIN,LEE SANG BONG,SUNG HYUNG JIN

Abstract

A systematic numerical analysis is performed for superharmonic excitations in a wake where a circular cylinder is rotationally oscillated in time. Emphasis is placed on identifying the secondary and tertiary lock-on in the forced wakes. The frequency responses are scrutinized by measuring the lift coefficient (CL). A direct numerical simulation has been conducted to portray the unsteady dynamics of wake flows behind a circular cylinder. The Reynolds number based on the diameter is Re = 106, and the forcing magnitude is 0.10 [les ] Ωmax [les ] 0.40. The tertiary lock-on is observed, where the shedding frequency (St0) is one third of the forcing frequency (Sf), i.e. the 1/3 subharmonic lock-on. The phase shift of CL with respect to the forcing frequency is observed. It is similar to that of the primary lock-on. However, in the secondary superharmonic excitation, modulated oscillations are observed, i.e. the lock-on does not exist. As Ωmax increases, St0 is gradually shifted from the natural shedding frequency (St*0) to lower values. The magnitudes and phases of Sf and St0 are analysed by the phase diagram. The vorticity contours are employed to examine the vortex formation mode against the forcing conditions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3