Molecular models for permeation through thin membranes: the effect of hydrodynamic interaction on permeability

Author:

Malone George H.,Hutchinson Thomas E.,Prager Stephen

Abstract

A variational method involving minimization of the energy dissipation rate which was previously developed for transport in polymer systems is applied here to flow of a continuum solvent through a thin membrane. The membrane is represented by an array of spherical particles undergoing Brownian motion, subject to various interactions with one another and with the motion of the solvent. General upper bounds on the solvent permeability of the membrane are obtained in terms of equilibrium distribution functions, and applications of the method are illustrated for the case where membrane elements are confined to a plane. Calculations which treat all beads equivalently give permeability estimates whose dependence on the number n of beads per unit area of membrane has the form, at low n, \[ \kappa = (6\pi\eta n)^{-1}(1-\alpha n+\ldots), \] where η is the solvent viscosity and α is a constant. More-elaborate trials which allow the drag on a bead to be influenced by the distribution of other beads in the vicinity give the stronger bounding estimate \[ \kappa = (6\pi\eta n)^{-1}(1+\alpha^{\prime}n\ln n+\ldots). \] Comparison with a self-consistent field approach suggests that this logarithmic behaviour is the true first-order correction.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Homogenization theory captures macroscopic flow discontinuities across Janus membranes;Journal of Fluid Mechanics;2023-09-07

2. Transport across thin membranes: Effective solute flux jump;Physics of Fluids;2022-08

3. Effective stress jump across membranes;Journal of Fluid Mechanics;2020-04-01

4. Shear flow over a particulate or fibrous plate;Journal of Engineering Mathematics;2001

5. Shear flow over a particulate or fibrous plate;Practical Asymptotics;2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3