Algebras with representable representations

Author:

García-Martínez X.ORCID,Tsishyn M.,Van der Linden T.,Vienne C.

Abstract

AbstractJust like group actions are represented by group automorphisms, Lie algebra actions are represented by derivations: up to isomorphism, a split extension of a Lie algebra $B$ by a Lie algebra $X$ corresponds to a Lie algebra morphism $B\to {\mathit {Der}}(X)$ from $B$ to the Lie algebra ${\mathit {Der}}(X)$ of derivations on $X$. In this article, we study the question whether the concept of a derivation can be extended to other types of non-associative algebras over a field ${\mathbb {K}}$, in such a way that these generalized derivations characterize the ${\mathbb {K}}$-algebra actions. We prove that the answer is no, as soon as the field ${\mathbb {K}}$ is infinite. In fact, we prove a stronger result: already the representability of all abelian actions – which are usually called representations or Beck modules – suffices for this to be true. Thus, we characterize the variety of Lie algebras over an infinite field of characteristic different from $2$ as the only variety of non-associative algebras which is a non-abelian category with representable representations. This emphasizes the unique role played by the Lie algebra of linear endomorphisms $\mathfrak {gl}(V)$ as a representing object for the representations on a vector space $V$.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference29 articles.

1. Semi-abelian categories

2. Algebraic exponentiation for categories of Lie algebras

3. Action accessibility for categories of interest;Montoli;Theory Appl. Categ,2010

4. Internal crossed modules and Peiffer condition;Mantovani;Theory Appl. Categ,2010

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A characterisation of Lie algebras using ideals and subalgebras;Bulletin of the London Mathematical Society;2024-05-08

2. On the representability of actions of Leibniz algebras and Poisson algebras;Proceedings of the Edinburgh Mathematical Society;2023-11

3. Associativity and the cosmash product in operadic varieties of algebras;Illinois Journal of Mathematics;2023-09-01

4. Algebraic logoi;Journal of Pure and Applied Algebra;2023-06

5. On Some Properties of Lie-Centroids of Leibniz Algebras;Bulletin of the Malaysian Mathematical Sciences Society;2022-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3