Using resting-state intrinsic network connectivity to identify suicide risk in mood disorders

Author:

Stange Jonathan P.ORCID,Jenkins Lisanne M.,Pocius Stephanie,Kreutzer Kayla,Bessette Katie L.,DelDonno Sophie R.,Kling Leah R.,Bhaumik Runa,Welsh Robert C.,Keilp John G.,Phan K. Luan,Langenecker Scott A.

Abstract

AbstractBackgroundLittle is known about the neural substrates of suicide risk in mood disorders. Improving the identification of biomarkers of suicide risk, as indicated by a history of suicide-related behavior (SB), could lead to more targeted treatments to reduce risk.MethodsParticipants were 18 young adults with a mood disorder with a history of SB (as indicated by endorsing a past suicide attempt), 60 with a mood disorder with a history of suicidal ideation (SI) but not SB, 52 with a mood disorder with no history of SI or SB (MD), and 82 healthy comparison participants (HC). Resting-state functional connectivity within and between intrinsic neural networks, including cognitive control network (CCN), salience and emotion network (SEN), and default mode network (DMN), was compared between groups.ResultsSeveral fronto-parietal regions (k > 57, p < 0.005) were identified in which individuals with SB demonstrated distinct patterns of connectivity within (in the CCN) and across networks (CCN-SEN and CCN-DMN). Connectivity with some of these same regions also distinguished the SB group when participants were re-scanned after 1–4 months. Extracted data defined SB group membership with good accuracy, sensitivity, and specificity (79–88%).ConclusionsThese results suggest that individuals with a history of SB in the context of mood disorders may show reliably distinct patterns of intrinsic network connectivity, even when compared to those with mood disorders without SB. Resting-state fMRI is a promising tool for identifying subtypes of patients with mood disorders who may be at risk for suicidal behavior.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3