A latent class analysis of drug abuse in a national Swedish sample

Author:

Kendler K. S.,Ohlsson H.,Sundquist K.,Sundquist J.

Abstract

BackgroundDrug abuse (DA) is a clinically heterogeneous syndrome. Using medical, legal, death and pharmacy records covering the entire population of Sweden, could we uncover meaningful subtypes of DA?MethodWe performed a latent class analysis (LCA) on all individuals in Sweden born 1950–1993 who were registered with DA or its consequences (n=192 501) and then validated these classes using demographics, patterns of co-morbidity with alcohol use disorder (AUD), non-DA crime and psychiatric illness, and the pattern of aggregation and co-aggregation in sibling pairs.ResultsThe best-fit LCA had six classes: (1) low-frequency pure criminal, (2) high-frequency medical criminal, (3) low-frequency pure medical, (4) high-frequency medical, (5) prescription and (6) death. Each class had a distinct pattern of demographic features and co-morbidity and aggregated within sibling pairs with at least moderate specificity. For example, class 2 was characterized by early age at registration, low educational attainment, high male preponderance, high rates of AUDs, strong resemblance within sibling pairs [odds ratio (OR) 12.6] and crime and the highest risk for DA in siblings (20.0%). By contrast, class 5 had a female preponderance, late age at registration, low rates of crime and AUDs, high rates of psychiatric illness, high familiality within sibling pairs (OR 14.7) but the lowest observed risk for DA in siblings (8.9%).ConclusionsDA as assessed by public records is a heterogeneous syndrome. Familial factors contribute substantially to this heterogeneity. Advances in our understanding of etiological processes leading to DA will be aided by a consideration of this heterogeneity.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Applied Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3