Abstract
The class Echinoidea apparently originated during the Ordovician Period and diversified slowly through the Paleozoic Era. The clade then mushroomed in diversity beginning in Late Triassic time and continued expanding into the present. Although this evolutionary history is generally accepted, the taphonomic overprint affecting it has not been explored. To gain a more accurate perception of the evolutionary history of the group, I have compared the diversity history of the family Cidaridae (Echinodermata: Echinoidea) with the preservational style of fossil type species using literature-derived data. The Cidaridae apparently originated in Middle Triassic time and diversified slowly through the Neocomian (Early Cretaceous). Diversity was maintained through the remainder of the Cretaceous and Tertiary Periods, reflecting the diversity history of the subclass. Characterization of the preservational style of type fossil material for the family revealed the following breakdown of preservational states: 60% of species were described on the basis of disarticulated skeletal material, primarily spines; 20% based on intact coronas denuded of spines, apical system, Aristotle's lantern and peristomial plates; 10% based on large coronal fragments; and 10% based on other skeletal elements. This distribution may represent the effect of a disarticulation threshold on the condition of echinoid carcasses before final burial and suggests that preservation of intact specimens may be very unlikely. For cidaroids, previous work has suggested that this threshold is likely to be reached after 7 days of decay.Comparison of the diversity history of the Cidaridae with the preservation data reveals that characteristic patterns of taphonomic overprint have affected the group since its origination in Middle Triassic time, and the nature of that overprint has changed over time: the early diversity history of the group is characterized by occurrences of fragmented fossil material, with spines predominant; further radiation of the group in mid-Jurassic time coincided with an increase in modes of preservation, ranging between exceptionally well-preserved material and disarticulated skeletal elements. Finally, type material is more rarely described from younger stratigraphic intervals (Miocene–Pleistocene) and consists predominantly of disarticulated skeletal elements and coronal fragments larger than an interambulacrum in size. Intact, denuded coronas are noticeably lacking.The number of type species of Cidaridae described in each stratigraphic interval has not been consistent during post-Paleozoic time. Middle Triassic, Malm (Upper Jurassic), Senonian (Upper Cretaceous) and Eocene series yielded significantly (α = .05) higher numbers of type specimens per million years, while the Lias (Lower Jurassic), Dogger (Mid-Jurassic), Lower Cretaceous and Paleocene yielded significantly (α = .05) lower numbers of type specimens per million years. This may be the result of a combination of taxonomic, sampling, and geographical biases.
Publisher
Cambridge University Press (CUP)
Subject
Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics
Reference30 articles.
1. Smith A. B. and Wright C. W. 1989. British Cretaceous echinoids Part I. General introduction and Cidaroida. Monograph of the Palaeontological Society:1–101 (Publication No. 578, Part of Volume 141 for 1987).
2. Echinoid evolutions from the Triassic to Lower Liassic;Smith;Cahiers de l'Institut Catholique de Lyon, Séries Science,1990
3. A factor analytic description of the Phanerozoic marine fossil record
4. Quantified coefficients of association and measurement of similarity
5. Palökologie, Konstruktionen, Sedimentologie, Diagenese und Vergesellschaftung von Fossilien;Seilacher;Zentralblatt für Geologie und Pälontologie,1976
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献