Author:
Leitherer Claus,Ekström Sylvia
Abstract
AbstractThe current state-of-the-art of population synthesis is reviewed. The field is currently undergoing major revisions with the recognition of several key processes as new critical ingredients. Stochastic effects can artificially enhance or suppress certain evolutionary phases and/or stellar mass regimes and introduce systematic biases in, e.g., the determination of the stellar initial mass function. Post-main-sequence evolution is often associated with irregular variations of stellar properties on ultra-short time-scales. Examples are asymptotic giant branch stars and luminous blue variables, both of which are poorly treated in the models. Stars rarely form in isolation, and the fraction of truly single stars may be very small. Therefore, stellar multiplicity must be accounted for since many systems will develop tidal interaction over the course of their evolution. Last but not least, stellar rotation can drastically increase stellar temperatures and luminosities, which in turn leads to revised mass-to-light ratios in population synthesis models.
Publisher
Cambridge University Press (CUP)
Subject
Astronomy and Astrophysics,Space and Planetary Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献