A multi-state spatio-temporal Markov model for categorized incidence of meningitis in sub-Saharan Africa

Author:

AGIER L.,STANTON M.,SOGA G.,DIGGLE P. J.

Abstract

SUMMARYMeningococcal meningitis is a major public health problem in the African Belt. Despite the obvious seasonality of epidemics, the factors driving them are still poorly understood. Here, we provide a first attempt to predict epidemics at the spatio-temporal scale required for in-year response, using a purely empirical approach. District-level weekly incidence rates for Niger (1986–2007) were discretized into latent, alert and epidemic states according to pre-specified epidemiological thresholds. We modelled the probabilities of transition between states, accounting for seasonality and spatio-temporal dependence. One-week-ahead predictions for entering the epidemic state were generated with specificity and negative predictive value >99%, sensitivity and positive predictive value >72%. On the annual scale, we predict the first entry of a district into the epidemic state with sensitivity 65·0%, positive predictive value 49·0%, and an average time gained of 4·6 weeks. These results could inform decisions on preparatory actions.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Epidemiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monitoring the impact of desert dust outbreaks for air quality for health studies;Environment International;2019-09

2. Comparison of Models Analyzing a Small Number of Observed Meningitis Cases in Navrongo, Ghana;Journal of Agricultural, Biological and Environmental Statistics;2016-12-02

3. Meningitis and climate: from science to practice;Earth Perspectives;2014

4. Towards realtime spatiotemporal prediction of district level meningitis incidence in sub-Saharan Africa;Journal of the Royal Statistical Society: Series A (Statistics in Society);2013-11-04

5. Seasonality of meningitis in Africa and climate forcing: aerosols stand out;Journal of The Royal Society Interface;2013-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3