Validation of chip grafting inoculation assay to assess the resistance of Solanum species against phytoplasma

Author:

Akhtar Khalid PervaizORCID,Ullah Najeeb,Saleem Muhammad Yussouf

Abstract

AbstractBig bud caused by several different phytoplasmas is an emerging threat to tomato production worldwide. The development of resistant varieties would be an effective approach to manage this problem, but it requires an appropriate screening technique. Recently, we have described a simple and efficient chip graft inoculation assay (CGIA) for the first time to screen tomato germplasm against Tomato leaf curl New Delhi virus. The present study was conducted to first validate the CGIA for phytoplasma transmission, then to assess the resistance of 74 genotypes belonging to different Solanum species against 16SrII-D phytoplasma. CGIA success rate and phytoplasma transmission was 100% since all the grafts survived and phytoplasma was detected in these plants using nested polymerase chain reaction. No genotype was found resistant as all the grafted plants showed typical disease symptoms. In addition to phytoplasma transmission, CGIA can be used for better understanding the plant–phytoplasma interactions and biology of phytoplasmas in tomato.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Genetics,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3