Increased nitrogen retention by cover crops: implications of planting date on soil and plant nitrogen dynamics

Author:

Zhou Yangxue,Roosendaal Lindsey,Van Eerd Laura L.

Abstract

AbstractCover crops are frequently adopted to immobilize residual nitrogen post-harvest, thereby reducing potential N losses. However, the effectiveness of a cover crop depends on the species planting date, and other management practices. Limited information on N dynamics in cover crop systems is available specially in short-season vegetable rotations under temperate climate. From 2008 to 2010, a split-plot field experiment was carried out in a humid, temperate climate with cover crop treatment as the main plot factor [no cover crop control (NoCC), cereal rye, hairy vetch, oat, forage pea, oilseed radish (OSR) and a control with fertilizer N to the cucumber crop (NoCC + N)], and cover crop planting date as the split factor (early and late) to evaluate their impacts on cover crop biomass and N dynamics over the fall and following cucumber crop. All cover crop treatments significantly lowered soil mineral nitrogen (SMN) by 39–87% compared to the NoCC control, which was concomitant with cover crop growth and N accumulation. In the fall, SMN (0–90 cm depth) was less under the early-planted cover crops (avg. 78 kg N ha−1) compared to the late-planted (avg. 100 kg N ha−1). In April, greater plant available nitrogen (PAN, sum of SMN to 60 cm depth and plant N) with cover crops than without demonstrated N conservation over the winter and into the cucumber crop. Crop yield was equal to or better with a cover crop compared with the NoCC in both years; moreover, compared to the NoCC + N control yields were equivalent with OSR and pea. Oat, vetch and pea cover crops benefited the most by having an earlier planting date, while OSR and rye are recommended if the planting date is delayed. Although an early August planting date significantly increased plant N accumulation and SMN by November, this species-dependent interaction did not persist into the following season in yield and N accounted for in the system.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3