Moving conservation agriculture from principles to a performance-based production system

Author:

Cordeau StéphaneORCID

Abstract

Abstract Conservation agriculture (CA) is an approach to farming that is defined by three principles: (1) minimal soil disturbance (no-till), (2) crop diversity in time and space, and (3) soil coverage by crop residues and/or cover crops. These principles provide a roadmap to protect and improve soil. However, the narrow criteria for defining CA may fail to account for tradeoffs between soil health and other ecosystem services. A literature review of meta-analyses dealing with CA and an online survey in France were conducted to explore the implementation and performances of CA. Research on CA systems has focused on crop productivity and soil quality whereas research on other dimensions of cropping system sustainability are lacking. The effects of CA on other aspects of sustainability such as biodiversity and profitability are less prevalent in the literature. The online survey results show that 63% of respondents thought that CA helps reduce pesticide use, 91% that CA improves water use efficiency, and 77% that CA helps to store carbon and achieve the objectives of the 4 per 1000 international initiative. Given the prevalence and widespread support for CA, we advocate for moving CA from its current definition based on the means toward a definition that includes performance-based metrics that address different ecosystem services. CA has potential to help address challenges associated with climate change, biodiversity loss, and water pollution, but opportunities may be missed without developing performance targets that go beyond soil conservation.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3