Author:
Chang W.-Y.,Lee L.-C.,Lien H.-C.,Lai J.-S.
Abstract
AbstractA model adopting the surface capturing method is developed for the simulation of dam-break flows by solving the Navier-Stokes equations of weakly compressible and variable density flows in open channels. Due to the characteristics of weakly compressible flow equations, a compressibility parameter describing the compressibility of fluid is determined to obtain the time-accurate flow fields in both liquid and gas regions simultaneously. Accordingly, the location of free surface can be captured as a discontinuity of the density field for dam-break flow simulations. The numerical algorithm in the proposed method is based on the framework of the finite volume method for discretization in space. To deal with the discontinuity property of fluid density near the free surface, the TVD-MUSCL scheme is adopted to overcome numerical oscillations and dissipation. For discretization in time, the explicit 4-stage Runge-Kutta scheme is employed in the model. Finally, several typical dam-break flow problems in open channel are simulated to demonstrate the validation and applicability of the proposed model.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献