Author:
Fedorchenko A. I.,Wang A.-B.,Mashanov V. I.,Cheng H.-H.
Abstract
AbstractA compressively strained pseudomorphic Si1−xGex film being debonded from Si substrate by selective etching forms wrinkles with a uniform space periodicity. The present study provides experimental evidences and a theoretical model for the wrinkling process. To allow large deflection, non-linear Von Karman plate theory is employed. The amplitude and wavelength of wrinkles are determined by minimizing the total free energy of a debonded wrinkled film. The wrinkling analysis has shown that the amplitude and wavelength of wrinkled film are an outcome of a subtle compromise between bending energy, and normal and shearing components of the stretching energy. The wave number nondimentionalized over the depth of etch is a function of the membrane strain of a bonded film, Poisson's ratio, and the nondimensional film thickness.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献