African Penguin tolerance to humans depends on historical exposure at colony level

Author:

PICHEGRU LORIEN,EDWARDS TREVOR B.,DILLEY BEN J.,FLOWER TOM P.,RYAN PETER G.

Abstract

SummarySustainable ecotourism requires careful management of human impacts on wildlife. Contrasting responses to the disturbance caused by ecotourism are observed across taxa and within species, because species and populations can differ in their tolerance to humans. However, the mechanisms by which tolerance develops remain unclear. Penguin colonies are popular tourist attractions. Although ecotourism increases public awareness and generates conservation income, it can also disturb penguins, raising concerns for threatened species such as the African Penguin Spheniscus demersus, whose populations are in rapid decline. We compared the tolerance of African Penguins to human disturbance across four colonies with contrasting histories of human exposure. Human approaches invoked the least response at colonies where human exposure was highest, suggesting increased human tolerance with increased exposure. The response to humans close to the nest also decreased more rapidly in highly exposed individuals within colonies. These results were consistent independent of breeding stage, and were repeated among colonies. Because the impacts of human disturbance, including temporary nest desertion, were greatest at the colony with least human exposure, human disturbance of breeding African Penguins potentially may be mitigated through increased levels of tolerance to humans, or displacement of shyer individuals, although this could not be assessed in the present study.However, human exposure could significantly increase stress, impair reproduction and even reduce genetic diversity. Consequently, ecotourism must be managed carefully to minimize population level impacts, potentially by facilitating habituation in populations subject to non-threatening human disturbance, and maintaining some areas free of disturbance to allow shy individuals to breed.

Publisher

Cambridge University Press (CUP)

Subject

Nature and Landscape Conservation,Animal Science and Zoology,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3