Climate and base-level controlled fluvial system change and incision during the last glacial–interglacial transition, Roer river, the Netherlands – western Germany

Author:

Kasse C.,Van Balen R.T.,Bohncke S.J.P.,Wallinga J.,Vreugdenhil M.

Abstract

AbstractThe fluvial development of the Roer river in the southeastern Netherlands and western Germany is presented for the Late Pleniglacial, Late-glacial and Early Holocene periods. Reconstruction of fluvial-style changes is based on geomorphological and sedimentological analysis. Time control comes from correlation to the pollen-based biochronostratigraphic framework of the Netherlands combined with independent optically stimulated luminescence (OSL) ages. At the Pleniglacial to Late-glacial transition a system and channel pattern change occurred from an aggrading braided to an incising meandering system. Rapid rates of meander migration, as established for the Late-glacial by optical dating, were likely related to the sandy nature of the substratum and the Late-glacial incision of the Meuse that resulted in a higher river gradient in the downstream part of the Roer. In the Roer valley the Younger Dryas cooling is not clearly reflected by a fluvial system response, but this may also be related to Holocene erosion of Younger Dryas fluvial forms. An important incision and terrace formation was established at the Younger Dryas to Early Holocene transition, probably related to forest recovery, reduced sediment supply and base-level lowering of the Meuse. The results of this study show a stepwise reduction in the number of channel courses from a multi-channel braided system in the Pleniglacial, to a double meander-belt system in the Late-glacial and a single-channel meandering system in the Early Holocene. The results show that the forcing factors of fluvial-system change in the Roer valley are climate change (precipitation, permafrost and vegetation) and downstream base-level control by the Meuse.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3