Author:
Duermeyer Lisza,Khodapanahi Ehsan,Yan Dawei,Krapp Anne,Rothstein Steven J.,Nambara Eiji
Abstract
AbstractNitrate promotes seed germination at low concentrations in many plant species, and functions as both a nutrient and a signal. As a nutrient, it is assimilated via nitrite to ammonium, which is then incorporated into amino acids. Nitrate reductase (NR) catalyses the reduction of nitrate to nitrite, the committed step in the assimilation. Seed sensitivity to nitrate is affected by other environmental factors, such as light and after-ripening, and by genotypes. Mode of nitrate action in seed germination has been well documented in Arabidopsis thaliana and the hedge mustard Sisymbrium officinale. In these species nitrate promotes seed germination independent of its assimilation by NR, suggesting that it acts as a signal to stimulate germination. In Arabidopsis, maternally applied nitrate affects the degree of primary dormancy in both wild-type and mutants defective in NR. This indicates that nitrate acts not only during germination, but also during seed development to negatively regulate primary dormancy. Functional genomics studies in Arabidopsis have revealed that nitrate elicits downstream events similar to other germination stimulators, such as after-ripening, light and stratification, suggesting that these distinct environmental signals share the same target(s). In Arabidopsis, the NIN-like protein 8 (NLP8) transcription factor, which acts downstream of nitrate signalling, induces nitrate-dependent gene expression. In particular, a gene encoding the abscisic acid (ABA) catabolic enzyme CYP707A2 is directly regulated by NLP8. This regulation triggers a nitrate-induced ABA decrease that permits seed germination. This review article summarizes an update of our current understanding of the regulation of seed dormancy and germination by nitrate.
Publisher
Cambridge University Press (CUP)
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献