Oestrogens, adipose tissues and environmental exposures influence obesity and diabetes across the lifecycle

Author:

Bardhi Olgert,Dubey Pallavi,Palmer Biff Franklin,Clegg Deborah J.

Abstract

Endogenous oestrogens regulate essential functions to include menstrual cycles, energy balance, adipose tissue distribution, pancreatic β-cell function, insulin sensitivity and lipid homeostasis. Oestrogens are a family of hormones which include oestradiol (E2), oestrone (E1) and oestriol (E3). Oestrogens function by binding and activating oestrogen receptors (ERs). Phytoestrogens are plant-derived compounds which exhibit oestrogenic-like activity and can bind to ERs. Phytoestrogens exert potential oestrogenic-like benefits; however, their effects are context-dependent and require cautious consideration regarding generalised health benefits. Xenoestrogens are synthetic compounds which have been determined to disrupt endocrine function through binding to ERs. Xenoestrogens enter the body through various routes and given their chemical structure they can accumulate, posing long-term health risks. Xenoestrogens interfere with endogenous oestrogens and their functions contributing to conditions like cancer, infertility, and metabolic disorders. Understanding the interplay between endogenous and exogenous oestrogens is critical in order to determine their potential health consequences and requires further investigation. This manuscript provides a summary of the role endogenous oestrogens have in regulating metabolic functions. Additionally, we discuss the impact phytoestrogens and synthetic xenoestrogens have on biological systems across various life stages. We highlight their mechanisms of action, potential benefits, risks and discuss the need for further research to bridge gaps in understanding and mitigate exposure-related health risks.

Publisher

Cambridge University Press (CUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3