Differences in efficacy, resistance mechanism and target protein interaction between two PPO inhibitors in Palmer amaranth (Amaranthus palmeri)

Author:

Wu ChenxiORCID,Goldsmith Michael-Rock,Pawlak John,Feng Paul,Smith Stacie,Navarro Santiago,Perez-Jones Alejandro

Abstract

AbstractA weed survey was conducted on 134 Palmer amaranth (Amaranthus palmeri S. Watson) populations from Mississippi and Arkansas in 2017 to investigate the spread of resistance to protoporphyrinogen oxidase (PPO) inhibitors using fomesafen as a proxy. Fomesafen resistance was found in 42% of the A. palmeri populations. To investigate the resistance basis of different PPO inhibitors, we further characterized 10 representative populations by in planta bioassay in a controlled environment and molecular characterizations (DNA sequencing and TaqMan® gene expression assay). A total of 160 plants were sprayed with a labeled field rate (1X) of fomesafen or salfufenacil and screened for the presence of three known resistance-endowing mutations in the mitochondrial PPX2 gene (ΔGly-210, Arg-128-Gly, Gly-399-Ala). To compare the potencies of fomesafen and saflufenacil, dose–response studies were conducted on two highly resistant and one sensitive populations. The interaction of the two herbicides with the target protein harboring known PPX2 mutations was also analyzed. Our results showed that: (1) 90% of the fomesafen- or saflufenacil-resistant plants have at least one of the three known PPX2 mutations, with ΔGly-210 being the most prevalent; (2) saflufenacil is more potent than fomesafen, with five to nine times lower resistance/susceptible (R/S) ratios; (3) fomesafen selects for more diverse mutations, and computational inhibitor/target modeling of fomesafen suggest a weaker binding affinity in addition to a smaller interaction volume and volume overlap with the substrate protoporphyrinogen IX than saflufenacil. As a result, saflufenacil shows reduced sensitivity to PPX2 target-site mutations. Results from current study can help pave the way for designing weed management strategies to delay resistance development and maintain the efficacy of PPO inhibitors.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3