Dicamba translocation in soybean and accumulation in seed

Author:

Zaccaro Maria Leticia M.ORCID,Norsworthy Jason K.ORCID,Brabham Chad B.ORCID

Abstract

AbstractThe dicamba-resistant cropping system was developed to be used as a tool to control multiple-resistant weed species, particularly Palmer amaranth (Amaranthus palmeri S. Watson). However, dicamba applications have resulted in off-target movement of the herbicide to susceptible neighboring vegetation, with frequent damage to non–dicamba resistant soybean [Glycine max (L.) Merr.]. Pod malformation and subsequent auxin-like injury to progeny is common when parent soybean plants are exposed to the herbicide post-flowering. Yet no publication to date has conveyed the presence of dicamba in seed. The objective of this study was to determine whether dicamba exists and at what quantities inside soybean seed following a low-dose exposure in the pod-filling stage using radiolabeled herbicide as a tracer. Non–dicamba resistant soybean plants were grown in the greenhouse until the pod-filling growth stage and then treated with 2.8 g ae ha−1 of dicamba (1/200 of the recommended rate of 560 g ae ha−1). Immediately afterward, [14C]dicamba (approximately 6.4 kBq per plant) was applied to the adaxial surface of one trifoliate leaf located in the midportion of each plant. The greatest amount of [14C]dicamba recovered was in seeds and in pods, and these plant parts accumulated 44% and 38% of the total absorbed, respectively. Chromatography results showed that the totality of the [14C]dicamba present in the soybean seeds was in the phytotoxic form, except for a single sample, in which one metabolite was detected (possibly 5-hydroxy dicamba). Precautions should be taken to avoid dicamba exposure to sensitive soybean fields, especially those dedicated to seed production, as this may result in low seed quality and symptomology on progeny plants.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3