IDENTIFICATION IN PORE WATERS OF RECYCLED SEDIMENT ORGANIC MATTER USING THE DUAL ISOTOPIC COMPOSITION OF CARBON (δ13C AND Δ14C): NEW DATA FROM THE CONTINENTAL SHELF INFLUENCED BY THE RHÔNE RIVER

Author:

Dumoulin J-PORCID,Rabouille C,Pourtout S,Bombled B,Lansard B,Caffy I,Hain S,Perron M,Sieudat M,Thellier B,Delqué-Količ E,Moreau C,Beck L

Abstract

ABSTRACTEstuaries and deltas are crucial zones to better understand the interactions between continents and oceans, and to characterize the mineralization and burial of different sources of organic matter (OM) and their effect on the carbon cycle. In the present study, we focus on the continental shelf of the northwest Mediterranean Sea near the Rhône river delta. Sediment cores were collected and pore waters were sampled at different depths at one station (Station E) located on this shelf. For each layer, measurements of dissolved inorganic carbon concentration (DIC) and its isotopic composition (δ13C and Δ14C) were conducted and a mixing model was applied to target the original signature of the mineralized OM. The calculated δ13C signature of the mineralized organic matter is in accordance with previous results with a δ13COM of marine origin that is not significantly impacted by the terrestrial particulate inputs from the river. The evolution with depth of Δ14C shows two different trends indicating two different Δ14C signatures for the mineralised OM. In the first 15 cm, the mineralized OM is modern with a Δ14COM = 100 ± 17‰ and corresponds to the OM produced during the nuclear period of the last 50 years. Deeper in the sediment, the result is very different with a depleted value Δ14COM = –172 ± 60‰ which corresponds to the pre-nuclear period. In these two cases, the marine substrate was under the influence of the local marine reservoir effect with more extreme Δ14C results. These differences can be largely explained by the influence of the river plume on the local marine DIC during these two periods.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3