Abstract
Abstract
There are well-known identities involving the Ext bifunctor, coproducts, and products in AB4 abelian categories with enough projectives. Namely, for every such category
\[\mathcal{A}\]
, given an object X and a set of objects
\[{\{ {{\text{A}}_{\text{i}}}\} _{{\text{i}} \in {\text{I}}}}\]
, an isomorphism
\[Ext_\mathcal{A}^{\text{n}}({ \oplus _{{\text{i}} \in {\text{I}}}}{{\text{A}}_{\text{i}}},{\text{X}}) \cong \prod\nolimits_{{\text{i}} \in {\text{I}}} {Ext_\mathcal{A}^{\text{n}}({{\text{A}}_{\text{i}}},{\text{X}})} \]
can be built, where
\[Ex{t^{\text{n}}}\]
is the nth derived functor of the Hom functor. The goal of this paper is to show a similar isomorphism for the nth Yoneda Ext, which is a functor equivalent to
\[Ex{t^{\text{n}}}\]
that can be defined in more general contexts. The desired isomorphism is constructed explicitly by using colimits in AB4 abelian categories with not necessarily enough projectives nor injectives, extending a result by Colpi and Fuller in [8]. Furthermore, the isomorphisms constructed are used to characterize AB4 categories. A dual result is also stated.
Publisher
Cambridge University Press (CUP)
Reference23 articles.
1. Erweiterung von Gruppen und ihren Isomorphismen
2. Sur quelques points d’algèbre homologique;Grothendieck;Tohoku Math. J. Second Ser.,1957
3. [17] Mitchell, B. , Theory of categories (Academic Press, New York & London, 1965).
4. Über die Erweiterung von Gruppen I
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献