Proof of a conjecture of Ramanujan

Author:

Atkin A. O. L.

Abstract

We writeandso that p(n) is the number of unrestricted partitions of n. Ramanujan [1] conjectured in 1919 that if q = 5, 7, or 11, and 24m ≡ 1 (mod qn), then p(m) ≡ 0 (mod qn). He proved his conecture for n = 1 and 2†, but it was not until 1938 that Watson [4] proved the conjecture for q = 5 and all n, and a suitably modified form for q = 7 and all n. (Chowla [5] had previously observed that the conjecture failed for q = 7 and n = 3.) Watson's method of modular equations, while theoretically available for the case q = 11, does not seem to be so in practice even with the help of present-day computers. Lehner [6, 7] has developed an essentially different method, which, while not as powerful as Watson's in the cases where Γ0(q) has genus zero, is applicable in principle to all primes q without prohibitive calculation. In particular he proved the conjecture for q = 11 and n = 3 in [7]. Here I shall prove the conjecture for q = 11 and all n, following Lehner's approach rather than Watson's. I also prove the analogous and essentially simpler result for c(m), the Fourier coefficient‡ of Klein's modular invariant j (τ) as

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference12 articles.

1. Proof of Ramanujan's partition congruence for the modulus IP;Lehner;Proc. Amer. Math. Soc.,1950

2. Ramanujans Vermutung über Zerfallungsanzahlen;Watson;J. Reine Angew. Math.,1938

3. Congruence properties of partitions

4. Some properties of p(n), the number ofpartitions of;Ramanujan;n Proc. Cambridge Phil. Soc.,1919

5. Divisibility Properties of the Fourier Coefficients of the Modular Invariant j(τ)

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3