Author:
AHMADI OMRAN,LUCA FLORIAN,OSTAFE ALINA,SHPARLINSKI IGOR E.
Abstract
AbstractWe recall that a polynomial f(X) ∈ K[X] over a field K is called stable if all its iterates are irreducible over K. We show that almost all monic quadratic polynomials f(X) ∈ ℤ[X] are stable over ℚ. We also show that the presence of squares in so-called critical orbits of a quadratic polynomial f(X) ∈ ℤ[X] can be detected by a finite algorithm; this property is closely related to the stability of f(X). We also prove there are no stable quadratic polynomials over finite fields of characteristic 2 but they exist over some infinite fields of characteristic 2.
Publisher
Cambridge University Press (CUP)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献