High temperature increases 2,4-D metabolism in resistant Amaranthus palmeri

Author:

Rudell Eduardo C.ORCID,Aarthy ThiagarayaselvamORCID,Shyam ChandrimaORCID,Borgato Ednaldo A.,Kaur SimerjeetORCID,Jugulam MithilaORCID

Abstract

AbstractPalmer amaranth (Amaranthus palmeri S. Watson) is a troublesome weed in several cropping systems in the United States. The evolution of resistance to multiple herbicides is a challenge for the management of this weed. Recently, we reported metabolic resistance to 2,4-D possibly mediated by cytochrome P450 (P450) activity in a six-way-resistant A. palmeri population (KCTR). Plant growth temperature can influence the herbicide efficacy and level of resistance. The effect of temperature on 2,4-D resistance in A. palmeri is unknown. In the present research, we investigated the response of KCTR and a known susceptible (MSS) A. palmeri response to 2,4-D grown under low-temperature (LT, 24/14 C, day/night [d/n]) or high-temperature (HT, 34/24 C, d/n) regimes. When MSS and KCTR plants were 8- to 10-cm tall, they were treated with 0, 140, 280, 560 (field recommended dose), 1,120, and 2,240 g ai ha−1 of 2,4-D. Further, 8- to 10-cm-tall MSS and KCTR plants grown at LT and HT were also treated with [14C]2,4-D to assess the metabolism of 2,4-D at LT and HT. The results of dose–response experiments suggest that KCTR A. palmeri exhibits 23 times more resistance to 2,4-D at HT than MSS. Nonetheless, at LT, the resistance to 2,4-D in KCTR was only 2-fold higher than in MSS. Importantly, there was enhanced metabolism of 2,4-D in both KCTR and MSS A. palmeri at HT compared with LT. Further, treatment with the P450 inhibitor malathion, followed by 2,4-D increased the susceptibility of KCTR at HT. Overall, rapid metabolism of 2,4-D increased KCTR resistance to 2,4-D at HT compared with LT. Therefore, the application of 2,4-D when temperatures are cooler can improve control of 2,4-D–resistant A. palmeri.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3