The Galactic Evolution of Boron

Author:

Primas Francesca

Abstract

Boron, together with lithium and beryllium, belongs to the group of the so-called light elements, the importance of which ranges from providing important tests to Big Bang nucleosynthesis scenarios to being useful probes of stellar interiors and useful tools to further constrain the chemical evolution of the Galaxy.Since it became operative in the late eighties, the Hubble Space Telescope (HST) and its high- and medium-resolution spectrographs have played a key role in analyzing boron. Boron has now been observed in several stars and in the interstellar medium (ISM), providing important information in different fields of astrophysical research (nucleosynthesis, cosmic-ray spallation, stellar structure). In particular, determinations of boron in unevolved stars of different metallicity have allowed to study how boron evolves with iron.After a general review of the current status of boron observations and of the major uncertainties affecting the measurements of its abundance, I will mainly concentrate on unevolved stars and discuss the ‘evolutionary’ picture emerging from the most recent analyses and how its interpretation compares with theoretical expectations. A brief discussion on future prospects will conclude this contribution, showing how the field may evolve and improve.

Publisher

Cambridge University Press (CUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3