Evolution of Planetary Nebulae: A comparison with Observed Central Stars

Author:

Schmidt-Voigt M.

Abstract

The relation between nebular excitation E(He II λ4686/Hβ-ratio) and absolute visual magnitude of the central star (CS) is compared with hydrodynamical models of planetary nebulae (PNe) from Schmidt-Voigt and Köppen (Astron. Astrophys., 174, 211 and 223) (see figure below, data from D. Schönberner, Astron. Astrophys., 169, 189). Models marked by drawn lines have a 0.644 M CS following a Schönberner track, an initially expelled PN of 0.1 M, and different mass loss rates of the precursor star on the AGB, described by the Reimers parameter η;η = 1 corresponds to a mass loss rate of 1.55 × 10−6M α−1 the dashed line model has a higher initially expelled mass (0.3 M), the dash-dotted line model a CS of 0.6 M which evolves more slowly. Model numbers refer to the above cited studies. Since MV increases with evolutionary time, the MV axis represents a (highly) nonlinear time axis: for MV < 4 the CS heats up towards its temperature maximum and the PN is optically thin. Differences for high excitation nebulae are most probably due to different helium abundances. When the rate of ionizing photons decreases as the nuclear energy sources extinguish (MV > 4), the excitation may decline, depending on the density in the nebula. For the so called “accreting models” (M > 10−6M α−1) the mass accretion from the AGB wind determines the density hence nebular excitation. For an AGB mass loss rate M < 10−5Mα−1 the numerical results approximately fit an exponential law E= E0exp (-M) with E0 ≊ 1.1 and M ≊ 6.1 × 10−6M α−1. From the spread of the observed E(MV = 4) we conclude a mean AGB mass loss rate of 6.+3.3−2.3 10−6M α−1 within 1σ error bars. Obviously the model 11 reproduces the data best since most of the observed objects are found in the dark shadowed regions of the histogram. This is totally consistent with our previous results (cited above). The colliding-wind models, having no initially PN, behave quite similar as model 11.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3