Hydrodynamics and particle array optical characterizations of a high-performance Langmuir–Blodgett process

Author:

Lebaigue O.ORCID,Delléa O.,Delhaye J.M.

Abstract

This paper describes the scientific features of an innovative technique to mass-produce monolayers of hexagonal close-packed structures (HCP) of particles (280–1100 nm). Our technique differs from a continuous roll-to-roll Langmuir–Blodgett (LB) process. It consists of a thin liquid film flowing down an inclined plane channel, the ramp, and entraining deposited particles floating on its surface to form a compact monolayer. Vertical sidewalls limit the entire flow. The main benefits of this technique in comparison with a standard LB process are a gentler push on the floating particles during the assembly and the prospect of better flexibility and scalability in the design of industrial applications. Our disruptive approach presents new control parameters and surprising but challenging hydraulic phenomena due to the flowing liquid. This paper investigates the hydrodynamics of this new LB-type design theoretically and experimentally. We propose an original theoretical prediction of the thickness of the liquid film flowing down the ramp without or with particles on its surface, including within the hydraulic jump region separating the liquid film whose surface is free of particles and the liquid film whose surface is particle-loaded. The experimental determinations of the film thickness obtained by a confocal chromatic technique and moiré topography agree well with our model. In addition, Bragg diffraction topography and false colour topography allow the HCP structure of the compact monolayer of particles to be quantified.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3