Growing mycelium leather: a paste substrate approach with post-treatments

Author:

Crawford AssiaORCID,Ruthanna Miller Sarah,Branco Sara,Fletcher Jessica,Stefanov Dimitar

Abstract

Abstract This research investigates a novel method for cultivating mycelium-based leather substitutes using a carefully formulated paste consistency substrate. The primary objectives are to enhance nutrient availability, facilitate scalability, and streamline cultivation processes. The study spans a 21-day cultivation period, during which a flower-based medium is employed, eliminating the need for labor-intensive harvesting techniques. Two fungal species, Ganoderma lucidum (rishi) and Pleurotus djamor (pink oyster) are tested to assess their compatibility with the growth method. These species were chosen based on their rapid colonization rates and inherent resilience. The investigation delves into various combinations of crosslinking agents, including glycerol (a plasticizer), commercial tanner, citric acid, and magnesium sulfate. The effects of these agents on tensile strength are compared and qualitative data is analyzed through the use of scanning electron microscopy (SEM) and stereo microscopy. Furthermore, the study explores the fabrication potential of non-woven textiles derived from mycelium, emphasizing their suitability as eco-friendly leather alternatives. Scaled prototypes are highlighted to demonstrate their feasibility. Post-treatment processes, such as dyeing with bio-based dyes and acrylic leather paint, are evaluated for their aesthetic impact. The research contributes a biodegradable material alternative that addresses the environmental challenges of high textile consumption. The findings add to the growing body of sustainable design methods in the realm of leather-like materials in bio-design.

Publisher

Cambridge University Press (CUP)

Reference37 articles.

1. Natural dyes and pigments in functional finishing

2. Comparative studies on submerged, liquid surface and solid state fermentation for citric acid production by Aspergillus niger RCNM 17;Narayanamurthy;Asian Journal of Microbiology, Biotechnology and Environmental Sciences,2008

3. Implementing bio-design tools to develop mycelium-based products

4. Designer’s Guide to Lab Practice

5. Cork-Based Structures in Energy Absorption Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3