Author:
Alves Claudianor O.,de Holanda Angelo R. F.,dos Santos Jefferson A.
Abstract
In this paper we show the existence of solution for the following class of semipositone problem
P$$\left\{\matrix{-\Delta u & = & h(x)(f(u)-a) & \hbox{in} & {\open R}^N, \cr u & \gt & 0 & \hbox{in} & {\open R}^N, \cr}\right.$$
where N ≥ 3, a > 0, h : ℝN → (0, + ∞) and f : [0, + ∞) → [0, + ∞) are continuous functions with f having a subcritical growth. The main tool used is the variational method together with estimates that involve the Riesz potential.
Publisher
Cambridge University Press (CUP)
Reference16 articles.
1. Uniqueness and stability of nonnegative solutions for semipositone problems in a ball
2. Positive solutions of elliptic nonpositone problems;Allegretto;Differ. Integral Equ.,1992
3. Existence results for superlinear semipositone BVP’s
4. Positive solutions for a classes of multiparameter elliptic semipositone problems;Caldwell;Electron. J. Diff. Eqns.,2007
5. Positive solutions for some semi-positone problems via bifurcation theory;Ambrosetti;Differ. Integral Equ.,1994
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献