Monte Carlo calculations of an Elekta Precise SL-25 photon beam model

Author:

Padilla-Cabal Fátima,Pérez-Liva Mailyn,Lara Elier,Alfonso Rodolfo,Lopez-Pino Neivy

Abstract

AbstractBackgroundMonte Carlo (MC) simulations have been used extensively for benchmarking photon dose calculations in modern radiotherapy using linear accelerators (linacs). Moreover, a major barrier to widespread clinical implementation of MC dose calculation is the difficulty in characterising the radiation source using data reported from manufacturers.PurposeThis work aims to develop a generalised full MC histogram source model of an Elekta Precise SL-25 linac (electron exit window, target, flattening filter, monitor chambers and collimators) for 6 MV photon beams used in standard therapies. The inclusion of many different probability processes such as scatter, nuclear reactions, decay, capture cross-sections and more led to more realistic dose calculations in treatment planning and quality assurance.Materials and methodsTwo different codes, MCNPX 2·6 and EGSr-BEAM, were used for the calculation of particle transport, first in the geometry of the internal/external accelerator source, and then followed by tracking the transport and energy deposition in phantom-equivalent tissues. A full phase space file was scored directly above the upper multilayer collimator’s jaws to derive the beam characteristics such as planar fluence, angular distribution and energy spectrum. To check the quality of the generated photon beam, its depth dose curves and cross-beam profiles were calculated and compared with measured data.ResultsIn-field dose distributions calculated using the accelerator models were tuned to match measurement data with preliminary calculations performed using the accelerator information provided by the manufacturer. Field sizes of 3×3, 5×5, 10×10, 15×15 and 20×20 cm2were analysed. Local differences between calculated and measured curve doses beneath 2% were obtained for all the studied field sizes. Higher discrepancies were obtained in the air–water interface, where measurements of dose distributions with the ionisation chamber need to be shifted for the effective point of measurement.ConclusionThe agreements between MC-calculated and measured dose distributions were excellent for both codes, showing the strength and stability of the proposed model. Beam reconstruction methods as direct input to dose-calculation codes using the recorded histograms can be implemented for more accurate patient dose estimation.

Publisher

Cambridge University Press (CUP)

Subject

Oncology,Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3